324 research outputs found

    XMM-Newton monitoring of X-ray variability in the quasar PKS 0558-504

    Get PDF
    We present the temporal analysis of X-ray observations of the radio-loud Narrow-Line Seyfert 1 galaxy (NLS1) PKS 0558-504 obtained during the XMM-Newton Calibration and Performance Verification (Cal/PV) phase. The long term light curve is characterized by persistent variability with a clear tendency for the X-ray continuum to harden when the count rate increases. Another strong correlation on long time scales has been found between the variability in the hard band and the total flux. On shorter time scales the most relevant result is the presence of smooth modulations, with characteristic time of ~ 2 hours observed in each individual observation. The short term spectral variability turns out to be rather complex but can be described by a well defined pattern in the hardness ratio-count rate plane.Comment: 6 pages, 7 figures, accepted for publication in A&A special issue on first results from XM

    The on-ground acquisition and data analysis system for the PDS detector on board the SAX satellite

    Get PDF
    The Phoswich Detection System (PDS) is the high-energy (15–300 keV) instrument on board the Italian-Dutch X-ray astronomy satellite SAX. Functional tests were carried on at BICRON (Newbury, Ohio, USA) and at LABEN (Vimodrone, Italy). Full ground calibrations have been performed between the end of 1994 and the beginning of 1995. We describe in the following the system that we used to acquire and analyse the data coming from the PDS experiment during the ground tests and calibrations. It will be used to store and maintain data during both the pre-operational and the operational phases. In a previous report (DAL FIUME D., FRONTERA F., ORLANDINI M. and TRIFOGLIO M., AIP Conf. Proc., 61 (1994) 395) we described the general architecture of the data analysis system. In this report we give a detailed description of the entire system, including the hardware and software developed by LABEN to acquire data during on-ground tests. A complete description of the different modules, user interface, inter-process communications, analysis and display tools are presented. Current status of the project is discussed

    Gamma-ray observations of Cygnus X-1 above 100 MeV in the hard and soft states

    Full text link
    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 carried out for which includes a remarkably prolonged `soft state' phase (June 2010 -- May 2011). Previous 1--10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Our AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F_soft < 20 x 10^{-8} ph/cm^2/s, excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in October 2009 during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of June 2010 (2010-06-30 10:00 - 2010-07-02 10:00 UT) exactly in coincidence with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.Comment: 16 pages, 12 figures, 1 table, accepted for publication in Ap

    CIWS-FW: a Customizable InstrumentWorkstation Software Framework for instrument-independent data handling

    Get PDF
    The CIWS-FW is aimed at providing a common and standard solution for the storage, processing and quick look at the data acquired from scientific instruments for astrophysics. The target system is the instrument workstation either in the context of the Electrical Ground Support Equipment for space-borne experiments, or in the context of the data acquisition system for instrumentation. The CIWS-FW core includes software developed by team members for previous experiments and provides new components and tools that improve the software reusability, configurability and extensibility attributes. The CIWS-FW mainly consists of two packages: the data processing system and the data access system. The former provides the software components and libraries to support the data acquisition, transformation, display and storage in near real time of either a data packet stream and/or a sequence of data files generated by the instrument. The latter is a meta-data and data management system, providing a reusable solution for the archiving and retrieval of the acquired data. A built-in operator GUI allows to control and configure the IW. In addition, the framework provides mechanisms for system error and logging handling. A web portal provides the access to the CIWS-FW documentation, software repository and bug tracking tools for CIWS-FW developers. We will describe the CIWS-FW architecture and summarize the project status.Comment: Accepted for pubblication on ADASS Conference Serie
    • …
    corecore